Advanced Computer Programming
[Lecture 10]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University
Spring 1397-98

EXCEPTION HANDLING

There are two aspects to dealing with program errors: detection and
handling.

Exception handling provides a flexible mechanism for passing control
from the point of error detection to a handler that can deal with the
error.

Throwing Exceptions

Usage
To signal an exceptional condition, use the throw statement to throw
an exception object.

Syntax throw exceptionObject;

Most exception objects
can be constructed with

if (amount > balance) an error message.

{
A new S "
throw new I1TegalArgumentException("Amount exceeds balance");
exception object — galarg ption()
fhgz"fﬁh:::vf;d balance = balance - amount;
) This line is not executed when

the exception is thrown.

The Java library provides many classes to signal all sorts of
exceptional conditions.

EXCEPTION hierarchy

Throwable
Error Exception
ClassNot O
TOException Found Bt
Exception P
I\n‘pm‘(ffom FileNotFound | Arithmetic
Java.lo Exception Exception
Mal formedURL | Classcast
Exception Exception
T1legal
UnknownHost L Arqument NunberFormat
Exception ! <+ Exception
Exception
IndexOut
|- ofgounds Import from
Exception SRl
NoSuch
| Inputhismatch
<~ Exception
Exception
NullPointer

Exception

Catching Exceptions

When you throw an exception, processing continues in an
exception handler.

Usage

Place the statements that can cause an exception inside a t ry block,
and the handler inside a catch clause.

Catching Exceptions

Syntax try
{

statement
statement

}
catch (ExceptionClass exceptionObject)
{

statement
statement
}
This construetor can throw a
FileNotFoundException.
try
{
Scanner in = new Scanner(new File("input.txt"));
String input = in.next();
. process(input); i i i
When an TOException is thrown,) / This is the exception that was thrown.

execution resumes here.

\ catch (IOException exception)
{

System.out.printin("Could not open input file");

}
Additional cateh clauses ———catch (Exception except) A FileNotFoundException
can appear here. Place { is a special case of an IOException.

wore specific exceptions System.out.printin(except.getMessage);
before wore general ones. 1

Catching Exceptions

try
{
String filename = . . .;
Scanner in = new Scanner(new File(filename));
String input = in.next(Q);
int value = Integer.parselnt(input);

catch (IOException exception)

{

exception.printStackTrace();

catch (NumberFormatException exception)

{
System.out.printIn(exception.getMessage());
}

Three exceptions may be thrown in this try block:
o The Scanner constructor can throw a FileNotFoundException.
® Scanner.next can throw a NoSuchETementException.

® Integer.parselnt can throw a NumberFormatException.

Catching Exceptions

o If a FileNotFoundException is thrown, then the catch clause for the I0Exception is
executed. (If you look at Figure 2, you will note that FileNotFoundException is a
descendant of T0Exception.) If you want to show the user a different message for a
FileNotFoundException, you must place the catch clause before the clause for an
IOException.

o If a NumberFormatException occurs, then the second catch clause is executed.

A NoSuchElementException is not caught by any of the catch clauses. The exception
remains thrown until it is caught by another try block.

Checked Exceptions

Definition

Checked exceptions are due to external circumstances that the
programmer cannot prevent. The compiler checks that your program
handles these exceptions.

Checked Exceptions

Definition

Checked exceptions are due to external circumstances that the
programmer cannot prevent. The compiler checks that your program
handles these exceptions.

In Java, the exceptions that you can throw and catch fall into three
categories:

@ Internal errors are reported by descendants of the type Error.

@ Descendants of RuntimeException, such as as
IndexOutOfBoundsExceptionor Illegal-
ArgumentException indicate errors in your code (Unchecked
Exceptions).

@ All other exceptions are checked exceptions. These exceptions
indicate that something has gone wrong for some external reason
beyond your control.

Catching Exceptions

try
{
File inFile = new File(filename);
Scanner in = new Scanner(inFile); // Throws FileNotFoundException

catch (FileNotFoundException exception) // Exception caught here
{

}
However, it commonly happens that the current method cannot handle the excep-
tion. In that case, you need to tell the compiler that you are aware of this exception
and that you want your method to be terminated when it occurs. You supply a
method with a throws clause.

public static String readData(String filename) throws FileNotFoundException

File inFile = new File(filename);
Scanner in = new Scanner(inFile);

The Finally Clause

Usage

Once a try block is entered, the statements in a £inally clause are
guaranteed to be executed, whether or not an exception is thrown.

Example:

PrintWriter out = new PrintWriter(filename);
try
{

}
finally
{

}

writeData(out);

out.close(Q);

The Finally Clause

Syntax try
{

Statement
Statement
finally
{
Statement
Statement
}
This variable must be declared outside the try block
so that the finally clause can access it.
PrintWriter out = new PrintWriter(filename);
This code wmay try
throw exceptions. {
writeData(out);
}
finally
This code is {
always executed, out.close();
even if an exception occurs. }

Exercise
Add exception handling to the previous exercise.

