
Advanced Computer Programming
[Lecture 09]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

Spring 1397-98

1



INPUT/OUTPUT

Reading and writing files are very useful skills for processing real
world data.

2



Input/Ouput Streams
There are two fundamentally different ways to store data: in text
format or binary format.
In text format, data items are represented in human-readable
form, as a sequence of characters. E.g., 12,345 is stored as ’1’
’2’ ’3’ ’4’ ’5’.
In binary form, data items are represented in bytes. E.g., 12,345
is stored as a sequence of four bytes: 0 0 48 57.
The Java library provides two sets of classes for handling input
and output. Streams handle binary data. Readers and writers
handle data in text form.

3



Reading Text Files

In Java, the most convenient mechanism for reading text is to use
the Scanner class.

To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.
(import java.io.File)
File inputFile = new File(fileAddress);

Connecting an Scanner to the file:
Scanner in = new Scanner(inputFile);

When you are done processing a file, be sure to close the
Scanner object.
in.close();

You can read from files in a same way that you read from the console.

4



Reading Text Files

In Java, the most convenient mechanism for reading text is to use
the Scanner class.

To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.
(import java.io.File)
File inputFile = new File(fileAddress);

Connecting an Scanner to the file:
Scanner in = new Scanner(inputFile);

When you are done processing a file, be sure to close the
Scanner object.
in.close();

You can read from files in a same way that you read from the console.

4



Reading Text Files

In Java, the most convenient mechanism for reading text is to use
the Scanner class.

To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.
(import java.io.File)
File inputFile = new File(fileAddress);

Connecting an Scanner to the file:
Scanner in = new Scanner(inputFile);

When you are done processing a file, be sure to close the
Scanner object.
in.close();

You can read from files in a same way that you read from the console.

4



Reading Text Files

In Java, the most convenient mechanism for reading text is to use
the Scanner class.

To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.
(import java.io.File)
File inputFile = new File(fileAddress);

Connecting an Scanner to the file:
Scanner in = new Scanner(inputFile);

When you are done processing a file, be sure to close the
Scanner object.
in.close();

You can read from files in a same way that you read from the console.

4



Writing Text Files

To write output to a file, you construct a PrintWriter object with
the desired file name.
(import java.io.PrintWriter)
PrintWriter out = new PrintWriter(fileAddress);

If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.

You can use the familiar print, println, and printf methods
with any PrintWriter object.

When you are done processing a file, be sure to close the
PrintWriter object.
out.close();

You can write to files in a same way that you write to the console.

5



Writing Text Files

To write output to a file, you construct a PrintWriter object with
the desired file name.
(import java.io.PrintWriter)
PrintWriter out = new PrintWriter(fileAddress);

If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.

You can use the familiar print, println, and printf methods
with any PrintWriter object.

When you are done processing a file, be sure to close the
PrintWriter object.
out.close();

You can write to files in a same way that you write to the console.

5



Writing Text Files

To write output to a file, you construct a PrintWriter object with
the desired file name.
(import java.io.PrintWriter)
PrintWriter out = new PrintWriter(fileAddress);

If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.

You can use the familiar print, println, and printf methods
with any PrintWriter object.

When you are done processing a file, be sure to close the
PrintWriter object.
out.close();

You can write to files in a same way that you write to the console.

5



Writing Text Files

To write output to a file, you construct a PrintWriter object with
the desired file name.
(import java.io.PrintWriter)
PrintWriter out = new PrintWriter(fileAddress);

If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.

You can use the familiar print, println, and printf methods
with any PrintWriter object.

When you are done processing a file, be sure to close the
PrintWriter object.
out.close();

You can write to files in a same way that you write to the console.

5



We may be in Trouble

If the file provided for a Scanner doesn’t exist, a
FileNotFoundException occurs when the Scanner object is
constructed.

The PrintWriter constructor generates this exception if it
cannot open the file for writing.

The compiler insists that we specify what the program should do
in this situation.

To terminate the main method if the exception occurs:
(import java.io.FileNotFoundException)
public static void main(String[] args) throws
FileNotFoundException

6



We may be in Trouble

If the file provided for a Scanner doesn’t exist, a
FileNotFoundException occurs when the Scanner object is
constructed.

The PrintWriter constructor generates this exception if it
cannot open the file for writing.

The compiler insists that we specify what the program should do
in this situation.

To terminate the main method if the exception occurs:
(import java.io.FileNotFoundException)
public static void main(String[] args) throws
FileNotFoundException

6



We may be in Trouble

If the file provided for a Scanner doesn’t exist, a
FileNotFoundException occurs when the Scanner object is
constructed.

The PrintWriter constructor generates this exception if it
cannot open the file for writing.

The compiler insists that we specify what the program should do
in this situation.

To terminate the main method if the exception occurs:
(import java.io.FileNotFoundException)
public static void main(String[] args) throws
FileNotFoundException

6



Common Errors

Backslashes in File Names
When you specify a file name as a string literal, and the name
contains backslash characters (as in a Windows file name), you
must supply each backslash twice:
File inputFile = new
File("c:\\homework\\input.dat");

Constructing a Scanner with a String
You are not allowed to write the file address directly into the
Scanner constructor:
Scanner in = new Scanner("input.txt"); // Error
You should create a File object first and pass it to the Scanner
constructor:
Scanner in = new Scanner(new File("input.txt"));

7



Common Errors

Backslashes in File Names
When you specify a file name as a string literal, and the name
contains backslash characters (as in a Windows file name), you
must supply each backslash twice:
File inputFile = new
File("c:\\homework\\input.dat");

Constructing a Scanner with a String
You are not allowed to write the file address directly into the
Scanner constructor:
Scanner in = new Scanner("input.txt"); // Error
You should create a File object first and pass it to the Scanner
constructor:
Scanner in = new Scanner(new File("input.txt"));

7



Exercise (InvertFile.java)
Write a program that reads lines from a file and prints them into
another file in reverse order.

8



Working with Text
Reading Words
The next method reads a string that is delimited by white space.

Reading Characters
Scanner in = new Scanner(. . .);
in.useDelimiter("");
char ch = in.next().charAt(0);
Classifying Characters
The Character class has methods for classifying characters.

9



Working with Text
Reading Words
The next method reads a string that is delimited by white space.
Reading Characters
Scanner in = new Scanner(. . .);
in.useDelimiter("");
char ch = in.next().charAt(0);

Classifying Characters
The Character class has methods for classifying characters.

9



Working with Text
Reading Words
The next method reads a string that is delimited by white space.
Reading Characters
Scanner in = new Scanner(. . .);
in.useDelimiter("");
char ch = in.next().charAt(0);
Classifying Characters
The Character class has methods for classifying characters.

9



Exercise (Count.java)
Write a program that counts both number of digits and number of
letters in a file.

10



Working with Text

Reading Lines
The nextLine method reads an entire line including its
white-space characters (except the newline character).
String line = in.nextLine();

Scanning a String
You can use a Scanner object to read the characters from a
string:
Scanner lineScanner = new Scanner(line);

Converting Strings to Numbers
If a string contains the digits of a number, you use the
Integer.parseInt or Double.parseDouble method to obtain
the number value.

11



Working with Text

Reading Lines
The nextLine method reads an entire line including its
white-space characters (except the newline character).
String line = in.nextLine();

Scanning a String
You can use a Scanner object to read the characters from a
string:
Scanner lineScanner = new Scanner(line);

Converting Strings to Numbers
If a string contains the digits of a number, you use the
Integer.parseInt or Double.parseDouble method to obtain
the number value.

11



Working with Text

Reading Lines
The nextLine method reads an entire line including its
white-space characters (except the newline character).
String line = in.nextLine();

Scanning a String
You can use a Scanner object to read the characters from a
string:
Scanner lineScanner = new Scanner(line);

Converting Strings to Numbers
If a string contains the digits of a number, you use the
Integer.parseInt or Double.parseDouble method to obtain
the number value.

11



Working with Text

Avoiding Errors When Reading Numbers
if the input is not a properly formatted number, an “input
mismatch exception” occurs.
To avoid exceptions, use the hasNextInt method to screen the
input when reading an integer.
if (in.hasNextInt()) ...

12



Formatting Output

additional options of the printf method

A format specifier has the following structure:

The first character is a %.

Next, there are optional “flags” that modify the format.

Next is the field width, the total number of characters in the field
(including the spaces used for padding), followed by an optional
precision for floating-point numbers.

The format specifier ends with the format type.

13



Formatting Output

14



Formatting Output

15



Formatting Output

Example:
System.out.printf("%-10s%10.2f", items[i] + ":",
prices[i]);

16



Command Line Arguments

Usage
When you invoke a program from the command line (typing java and
the name of the program) you can also type in additional information
that the program can use. These additional strings are called
command line arguments (arguments for the main method).

Example:
java ProgramClass -v input.dat

The program receives two command line arguments: the strings
"-v" and "input".

The program receives its command line arguments in the args
parameter of the main method.

17



Command Line Arguments

Usage
When you invoke a program from the command line (typing java and
the name of the program) you can also type in additional information
that the program can use. These additional strings are called
command line arguments (arguments for the main method).

Example:
java ProgramClass -v input.dat

The program receives two command line arguments: the strings
"-v" and "input".

The program receives its command line arguments in the args
parameter of the main method.

17



Command Line Arguments

Usage
When you invoke a program from the command line (typing java and
the name of the program) you can also type in additional information
that the program can use. These additional strings are called
command line arguments (arguments for the main method).

Example:
java ProgramClass -v input.dat

The program receives two command line arguments: the strings
"-v" and "input".

The program receives its command line arguments in the args
parameter of the main method.

17



Exercise
Write a program that encrypts a file–that is, scrambles it so that it is
unreadable except to those who know the decryption method.
Encryption works as follows:
Replacing A with a D, B with an E, and so on,

The program takes the following command line arguments:

An optional -d flag to indicate decryption instead of encryption.

The input file name

The output file name

18



EXCEPTION HANDLING

There are two aspects to dealing with program errors: detection and
handling.
Exception handling provides a flexible mechanism for passing control
from the point of error detection to a handler that can deal with the
error.

19



Throwing Exceptions
Usage
To signal an exceptional condition, use the throw statement to throw
an exception object.

The Java library provides many classes to signal all sorts of
exceptional conditions.

20



EXCEPTION hierarchy

21



Catching Exceptions

When you throw an exception, processing continues in an
exception handler.

Usage
Place the statements that can cause an exception inside a try block,
and the handler inside a catch clause.

22



Catching Exceptions

23



Catching Exceptions

24



Catching Exceptions

25



Checked Exceptions

Definition
Checked exceptions are due to external circumstances that the
programmer cannot prevent. The compiler checks that your program
handles these exceptions.

In Java, the exceptions that you can throw and catch fall into three
categories:

Internal errors are reported by descendants of the type Error.

Descendants of RuntimeException, such as as
IndexOutOfBoundsException or Illegal-
ArgumentException indicate errors in your code (Unchecked
Exceptions).

All other exceptions are checked exceptions. These exceptions
indicate that something has gone wrong for some external reason
beyond your control.

26



Checked Exceptions

Definition
Checked exceptions are due to external circumstances that the
programmer cannot prevent. The compiler checks that your program
handles these exceptions.

In Java, the exceptions that you can throw and catch fall into three
categories:

Internal errors are reported by descendants of the type Error.

Descendants of RuntimeException, such as as
IndexOutOfBoundsException or Illegal-
ArgumentException indicate errors in your code (Unchecked
Exceptions).

All other exceptions are checked exceptions. These exceptions
indicate that something has gone wrong for some external reason
beyond your control.

26



Catching Exceptions

27



The Finally Clause

Usage
Once a try block is entered, the statements in a finally clause are
guaranteed to be executed, whether or not an exception is thrown.

Example:

28



The Finally Clause

29



Exercise
Add exception handling to the previous exercise.

30


